Evolution of self-assembled silica-tetrapropylammonium nanoparticles at elevated temperatures.
نویسندگان
چکیده
The time evolution of silica nanoparticles in solutions of tetrapropylammonium (TPA) has been studied using a combination of small-angle scattering, conductivity, and pH measurements to provide the first comprehensive analysis of nanoparticle structural and compositional changes at elevated temperatures. We have found that silica-TPA nanoparticles subjected to hydrothermal treatment (70-90 degrees C) grow via an Ostwald ripening mechanism with growth rates that depend on both pH and temperature. Small-angle X-ray (SAXS) and neutron (SANS) scattering confirm that the core-shell structure of the particles, initially present at room temperature, is maintained during heating, but an evolution toward sphericity is evidenced especially at high values of pH. SAXS absolute intensity calculations were utilized to calculate the changes in nanoparticle composition and concentration over time. These changes along with the conductivity and pH measurements and SANS contrast matching studies indicate that, upon heating, TPA becomes embedded in the core of nanoparticles giving rise to more zeolitic-looking nanomaterials.
منابع مشابه
Effect of Temperature and Reaction Time on the Morphology and Phase Evolution of Self-assembled Cu7.2S4 Nanospheres Obtained from Nanoparticles and Nanorods Synthesized by Solvothermal Method
In this research, self-assembled copper sulfide nanospheres were synthesized by the solvothermal method and the effects of reaction parameters, including reaction time and reaction temperature on the morphology and phase evolution of copper sulfide nanostructures were investigated. For the identification of copper sulfide nanostructures, X-ray diffraction (XRD), infrared spectroscopy (FT-IR), f...
متن کاملFormation and structure of self-assembled silica nanoparticles in basic solutions of organic and inorganic cations.
The phase behavior of silica solutions containing organic and inorganic cations was studied at room temperature using conductivity, pH, and small-angle scattering experiments. A critical aggregation concentration (cac) was observed at approximately 1:1 ratio of SiO(2)/OH(-) for all cation solutions from conductivity and pH studies. From this cac, a phase diagram of the system was developed with...
متن کاملSintering-Resistant Nanoparticles in Wide-Mouthed Compartments for Sustained Catalytic Performance
Particle sintering is one of the most significant impediments to functional nanoparticles in many valuable applications especially catalysis. Herein, we report that sintering-resistant nanoparticle systems can be realized through a simple materials-design which maximizes the particle-to-particle traveling distance of neighbouring nanoparticles. As a demonstration, Pt nanoparticles were placed a...
متن کاملSelf-Assembly in Biosilicification and Biotemplated Silica Materials
During evolution, living organisms have learned to design biomolecules exhibiting self-assembly properties to build-up materials with complex organizations. This is particularly evidenced by the delicate siliceous structures of diatoms and sponges. These structures have been considered as inspiration sources for the preparation of nanoscale and nanostructured silica-based materials templated by...
متن کاملThe effect of smart water and silica nanoparticles injection on wettability of limestone
Today, by using half of the oil reserves of the world, natural production of oil has decreased drastically. Gas and water injection for maintaining reservoir pressure is not responsive for oil production.At first, we dispersed silica nanoparticles in low salinity and after two weeks, there was no change in its stability. Then we mixed the nanoparticles in low salinity. After a while, we found o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 109 26 شماره
صفحات -
تاریخ انتشار 2005